
Conversation Design Samples: Kozan Soykal

Using game-design interactions to demonstrate content design for
conversational AI

1) Conversation Flow Examples

Flow A — Map Hotspots & Hover Label (ClickBG scene)

Kozan’s input

●​ Create a simple ClickBG scene with a fixed background.
●​ Some regions are hotspots with an always-visible faint outline.
●​ On hover: show full outline + translucent fill + a label near the hotspot.
●​ On click: trigger VNOverlayLoader.ShowVN("VNScene") as an additive

overlay, pausing base input until closed.
●​ Use polygonal shapes I can edit by hand in the Scene view.
●​ Add a timeline gate so hotspots can be enabled/disabled by story phase (start at

phase 1).
●​ Start with one hotspot we can clone.

Assistant thought pattern (summarized)

●​ Convert requirements into a prefab pattern: collider = truth source; visuals
auto-generated.

●​ Make the label robust across canvas/camera settings; support fixed screen
placement near a world anchor.

●​ Keep it timeline-aware now, and ready to plug into global GameState later.
●​ Anticipate common Unity pitfalls (compile deps, canvas camera, layout clamping)

and build toggles/fallbacks.

Resulting structure / architecture

●​ Hotspot2D (MonoBehaviour):
○​ Requires PolygonCollider2D (isTrigger).​

Renders outline via LineRenderer + fill mesh via a tiny triangulator.​
Hover → highlight & label; Click → call
VNOverlayLoader.ShowVN("VNScene").​
Optional labelAnchor transform + labelOffsetWorld.​

●​ HotspotHoverUI (screen-space UI helper):
○​ Places label near a supplied world position using viewport mapping.

○​ clampToCanvas toggle; pixelOffset; rebuilds layout before measuring.
○​ Backward-compatible overload for Show(text, pos) that defaults to

Camera.main.​

●​ ClickBGTimeline (singleton):
○​ IsActive(min,max) gating with phase=1 by default; future hook to

GameState.​

●​ Editor workflow:
○​ Place BG sprite, add Sorting Layers (Background, Hotspots).
○​ Place Canvas and a small TMP label panel (pivot ~ (0.5, 0)).
○​ Create Hotspot_EastBarn: draw polygon points; assign optional

LabelAnchor.
○​ Duplicate to create more hotspots; set minTimeline/maxTimeline as

needed.

Error / fallback handling in this flow (what I asked for and how it was handled)

●​ Missing dependency (Triangulator) → provide a self-contained version
inside Hotspot2D.cs.

●​ Label “drift” / wrong position → use viewport-based mapping, ensure
canvas.worldCamera for Screen-Space Camera, add optional clamping.

●​ Signature break (CS7036) → two paths: (1) add overload to keep old calls, (2)
pass Camera.main.

Flow B — Combat UI: Dynamic Portraits & Left Bench

Kozan’s input

●​ In UI_Combat_Simple, the active portrait should update automatically: show
Derfel when it’s Derfel’s turn, Birne when it’s Birne’s turn.

●​ The left bench should display the inactive character(s) with HP/MP/IP bars
and portrait.

●​ When it’s Derfel’s turn, left bench shows Birne (and vice versa).
●​ During enemy turns, bench shows both PCs.
●​ Prefer drop-in scripts and wiring steps; if you need to inspect a .cs, ask first.

Assistant thought pattern (summarized)

●​ Subscribe UI to the game’s existing turn and stats events rather than polling.
●​ Treat UI as “dumb” (display only): have a single controller react to

TurnManager and UnitRuntime.OnStatsChanged.
●​ Avoid editor fragility: fill portraits/bars from unit data; don’t hard-wire sprite

references in UI prefabs.

Resulting structure / architecture

●​ UI_Combat_Simple​

○​ Subscribes to TurnManager.OnTurnChanged(activeUnit) to swap
the active portrait automatically.

○​ Holds references to a LeftBench presenter and the ActivePortrait
presenter.​

●​ ActivePortraitPresenter​

○​ Bind(UnitRuntime pc) → populate portrait from UnitDefinitionSO
/ runtime portrait field.

○​ Listens to OnStatsChanged to reflect buffs/debuffs if needed.​

●​ LeftBenchPresenter​

○​ Show(IEnumerable<UnitRuntime> inactivePCs) → renders
bench items for the non-active PCs.

○​ Each bench item binds bars to HP/MP/IP and a portrait supplied by unit
data.​

●​ Wiring​

○​ On player turn: LeftBench.Show(other PCs).
○​ On enemy turn: LeftBench.Show(all PCs).
○​ Portrait lookups: first try runtime’s portrait ref; fall back to definition.​

Benefits

●​ Minimal coupling; new PCs slot in via data.
●​ No hard-coded images in the UI; everything flows from unit data + events.
●​ Predictable bench behavior across player and enemy rounds.​

2) Voice & Tone Guidelines

These do’s and don’ts are taken from how I direct the assistant in this
project. They define the agent’s voice I expect.

Set scope and turn-taking

●​ Do: Just confirm you read, no other response. Do not provide any code yet.
●​ Don’t: Include explanations, extra notes, or commentary when I’ve asked only

for an acknowledgment.

Ask before inspecting code or structure

●​ Do: “Let me know if you need to look at what’s inside the .cs files.”
●​ Do: “If you’re not aware how pieces connect, ask to see the hierarchy/structure.”
●​ Don’t: Assume file contents or scene wiring.

Deliver copy-pasteables

●​ Do: “Give me a drop-in for Hotspot2D.cs.”
●​ Do: “Provide wiring instructions, step-by-step.”
●​ Don’t: Hand-wave with generalities like “you can figure it out in the editor.”

Respect existing systems & assumptions

●​ Do: “Reuse the same VN overlay scene as Dungeon; keep input paused while
VN is open.”

●​ Do: “Carry prior context (Derfel & Birne, UnitRuntime, OnStatsChanged).”
●​ Don’t: Replace or rewrite core systems without a reason.​

Offer choices; state trade-offs

●​ Do: “Two options: add a backward-compatible overload or pass Camera.main
at the call site.”

●​ Don’t: Present a single path as the only solution when alternatives exist.

Be concise and actionable

●​ Do: “Save as FileName.cs. Paste exactly. Then do: 1) add component, 2) set
pivot, 3) assign label.”

●​ Don’t: Provide large, unstructured paragraphs without steps or defaults.

3) Error & Fallback Handling — Guidelines I expect you (the assistant) to follow

Ask-first triggers

1.​ Code context unknown → “If you do not remember the last state of a .cs, ask
to see the current file content.”

2.​ Structure unknown → “If you’re not aware of how components connect (Unity
hierarchy, web .css / .html linkage, build graph), ask to see the structure.”

3.​ Environment affects behavior → Ask about Canvas mode, world camera,

sorting layers, assembly definitions, platform.
4.​ Risk of overwriting defaults → Confirm before changing control visuals, input

routing, or shared assets.​

Verification checklists (use before proposing fixes)

●​ Unity UI placement: Canvas mode, canvas.worldCamera, panel
pivot/anchors, layout rebuild, optional clamp toggle.

●​ Compile errors: Confirm file/class names match; check asmdefs,
namespaces, Editor folder pitfalls.

●​ Event-driven UI: Verify there is an event to subscribe (e.g., OnTurnChanged,
OnStatsChanged) before suggesting polling.

●​ Data flow: Portraits and stats should come from runtime/definition data, not
hard-wired prefab references.​

Fix strategy (how to propose changes)

●​ Prefer minimal, reversible changes first.
●​ When a change breaks signatures, offer two clear options (e.g., overload vs.

update call site).
●​ When behavior may vary by setup, offer a named toggle (e.g.,

clampToCanvas) instead of silent assumptions.
●​ Provide drop-in files with exact filenames and editor steps (what to add, where

to assign).​

Acknowledge uncertainty (what to say)

●​ “Based on your current description, I’m assuming X. If that’s wrong, show me Y
and I’ll adjust.”

●​ “I can’t see your latest UI_Combat_Simple.cs—paste it if the binding differs.”

Escalate / handoff

●​ If a fix requires risky refactors or unclear product intent, pause and ask for
human decision: “Do you want A (faster) or B (cleaner API)?”

●​ If external constraints block progress (e.g., missing package/asset), document
the exact missing piece and a workable interim (e.g., bundled helper).​

Examples from this session

●​ Missing class → provided self-contained Triangulator to remove coupling.
●​ Label drift → verified canvas/camera, switched to viewport mapping, added

clamp toggle.

●​ Signature error (CS7036) → gave two paths: overload or pass camera arg.

Appendix — Reusable Artifacts

●​ Hotspot2D.cs (polygon collider → outline/fill, hover label, click to VN overlay,
optional label anchor).

●​ HotspotHoverUI.cs (viewport mapping, layout rebuild, clamp toggle,
Show(text, pos[, camera])).

●​ ClickBGTimeline.cs (phase gate; fail-open in editor; hook for GameState).
●​ Combat UI presenters (Active portrait & Left bench bind to TurnManager +

UnitRuntime.OnStatsChanged).
●​ Data-first UI (portraits & bars sourced from unit data, not prefab fields).

	Conversation Design Samples: Kozan Soykal
	1) Conversation Flow Examples
	Flow A — Map Hotspots & Hover Label (ClickBG scene)
	Flow B — Combat UI: Dynamic Portraits & Left Bench

	2) Voice & Tone Guidelines
	3) Error & Fallback Handling — Guidelines I expect you (the assistant) to follow
	Appendix — Reusable Artifacts

