Conversation Design Samples: Kozan Soykal

Using game-design interactions to demonstrate content design for
conversational Al

1) Conversation Flow Examples

Flow A — Map Hotspots & Hover Label (ClickBG scene)

Kozan’s input

Create a simple ClickBG scene with a fixed background.

Some regions are hotspots with an always-visible faint outline.

On hover: show full outline + translucent fill + a label near the hotspot.

On click: trigger VNOverlayLoader.ShowVN("VNScene") as an additive
overlay, pausing base input until closed.

Use polygonal shapes | can edit by hand in the Scene view.

Add a timeline gate so hotspots can be enabled/disabled by story phase (start at
phase 1).

Start with one hotspot we can clone.

Assistant thought pattern (summarized)

Convert requirements into a prefab pattern: collider = truth source; visuals
auto-generated.

Make the label robust across canvas/camera settings; support fixed screen
placement near a world anchor.

Keep it timeline-aware now, and ready to plug into global GameState later.
Anticipate common Unity pitfalls (compile deps, canvas camera, layout clamping)
and build toggles/fallbacks.

Resulting structure / architecture

Hotspot2D (MonoBehaviour):
o Requires PolygonCollider2D (isTrigger).
Renders outline via LineRenderer + fill mesh via a tiny triangulator.
Hover — highlight & label; Click — call
VNOverlayLoader.ShowVN("VNScene").
Optional 1abelAnchor transform + 1labelOffsetWorld.

HotspotHoverUl (screen-space Ul helper):
o Places label near a supplied world position using viewport mapping.



o clampToCanvas toggle; pixelOffset; rebuilds layout before measuring.
o Backward-compatible overload for Show(text, pos) that defaults to
Camera.main.

ClickBGTimeline (singleton):
o IsActive(min,max) gating with phase=1 by default; future hook to
GameState.

Editor workflow:
o Place BG sprite, add Sorting Layers (Background, Hotspots).
o Place Canvas and a small TMP label panel (pivot~ (6.5, 0)).
o Create Hotspot_EastBarn: draw polygon points; assign optional
LabelAnchor.
o Duplicate to create more hotspots; set minTimeline/maxTimeline as
needed.

Error / fallback handling in this flow (what | asked for and how it was handled)

Missing dependency (Triangulator) — provide a self-contained version
inside Hotspot2D.cs.

Label “drift” / wrong position — use viewport-based mapping, ensure
canvas.worldCamera for Screen-Space Camera, add optional clamping.
Signature break (CS7036) — two paths: (1) add overload to keep old calls, (2)
pass Camera.main.

Flow B — Combat Ul: Dynamic Portraits & Left Bench

Kozan’s input

In UI_Combat_Simple, the active portrait should update automatically: show
Derfel when it's Derfel’s turn, Birne when it's Birne’s turn.

The left bench should display the inactive character(s) with HP/MP/IP bars
and portrait.

When it's Derfel’s turn, left bench shows Birne (and vice versa).

During enemy turns, bench shows both PCs.

Prefer drop-in scripts and wiring steps; if you need to inspect a . cs, ask first.

Assistant thought pattern (summarized)

Subscribe Ul to the game’s existing turn and stats events rather than polling.
Treat Ul as “dumb” (display only): have a single controller react to
TurnManager and UnitRuntime.OnStatsChanged.

Avoid editor fragility: fill portraits/bars from unit data; don’t hard-wire sprite



references in Ul prefabs.
Resulting structure / architecture

e Ul_Combat_Simple

o Subscribes to TurnManager .0OnTurnChanged(activeUnit) to swap
the active portrait automatically.

o Holds references to a LeftBench presenter and the ActivePortrait
presenter.

e ActivePortraitPresenter

o Bind(UnitRuntime pc) — populate portrait from UnitDefinitionS0
/ runtime portrait field.
o Listens to OnStatsChanged to reflect buffs/debuffs if needed.

o LeftBenchPresenter

o Show(IEnumerable<UnitRuntime> inactivePCs) — renders
bench items for the non-active PCs.

o Each bench item binds bars to HP/MP/IP and a portrait supplied by unit
data.

e Wiring

o On player turn: LeftBench.Show(other PCs).
o Onenemy turn: LeftBench.Show(all PCs).
o Portrait lookups: first try runtime’s portrait ref; fall back to definition.

Benefits

e Minimal coupling; new PCs slot in via data.
e No hard-coded images in the Ul; everything flows from unit data + events.
e Predictable bench behavior across player and enemy rounds.

2) Voice & Tone Guidelines

These do’s and don’ts are taken from how | direct the assistant in this
project. They define the agent’s voice | expect.

Set scope and turn-taking



e Do: Just confirm you read, no other response. Do not provide any code yet.
e Don’t: Include explanations, extra notes, or commentary when I've asked only
for an acknowledgment.

Ask before inspecting code or structure

e Do: “Let me know if you need to look at what’s inside the .cs files.”

e Do: “If you're not aware how pieces connect, ask to see the hierarchy/structure.”
e Don’t: Assume file contents or scene wiring.

Deliver copy-pasteables

e Do: “Give me a drop-in for Hotspot2D.cs.”
e Do: “Provide wiring instructions, step-by-step.”
e Don’t: Hand-wave with generalities like “you can figure it out in the editor.”

Respect existing systems & assumptions

e Do: “Reuse the same VN overlay scene as Dungeon; keep input paused while
VN is open.”

e Do: “Carry prior context (Derfel & Birne, UnitRuntime, OnStatsChanged).”

e Don’t: Replace or rewrite core systems without a reason.

Offer choices; state trade-offs

e Do: “Two options: add a backward-compatible overload or pass Camera.main
at the call site.”
e Don’t: Present a single path as the only solution when alternatives exist.

Be concise and actionable

e Do: “Save as FileName.cs. Paste exactly. Then do: 1) add component, 2) set
pivot, 3) assign label.”
e Don’t: Provide large, unstructured paragraphs without steps or defaults.

3) Error & Fallback Handling — Guidelines | expect you (the assistant) to follow

Ask-first triggers

1. Code context unknown — “If you do not remember the last state of a . cs, ask
to see the current file content.”

2. Structure unknown — “If you’re not aware of how components connect (Unity
hierarchy, web .css / .html linkage, build graph), ask to see the structure.”

3. Environment affects behavior — Ask about Canvas mode, world camera,



sorting layers, assembly definitions, platform.
4. Risk of overwriting defaults — Confirm before changing control visuals, input
routing, or shared assets.

Verification checklists (use before proposing fixes)

e Unity Ul placement: Canvas mode, canvas.worldCamera, panel
pivot/anchors, layout rebuild, optional clamp toggle.

e Compile errors: Confirm file/class names match; check asmdefs,
namespaces, Editor folder pitfalls.

e Event-driven Ul: Verify there is an event to subscribe (e.g., OnTurnChanged,
OnStatsChanged) before suggesting polling.

e Data flow: Portraits and stats should come from runtime/definition data, not
hard-wired prefab references.

Fix strategy (how to propose changes)

e Prefer minimal, reversible changes first.

e \When a change breaks signatures, offer two clear options (e.g., overload vs.
update call site).

e \When behavior may vary by setup, offer a named toggle (e.g.,
clampToCanvas) instead of silent assumptions.

e Provide drop-in files with exact filenames and editor steps (what to add, where
to assign).

Acknowledge uncertainty (what to say)

e “Based on your current description, I'm assuming X. If that’'s wrong, show me Y
and I'll adjust.”
e ‘| can’t see your latest UI_Combat_Simple.cs—paste it if the binding differs.”

Escalate / handoff

e If a fix requires risky refactors or unclear product intent, pause and ask for
human decision: “Do you want A (faster) or B (cleaner API1)?”

e |If external constraints block progress (e.g., missing package/asset), document
the exact missing piece and a workable interim (e.g., bundled helper).

Examples from this session

e Missing class — provided self-contained Triangulator to remove coupling.
e Label drift — verified canvas/camera, switched to viewport mapping, added
clamp toggle.



e Signature error (CS7036) — gave two paths: overload or pass camera arg.

Appendix — Reusable Artifacts

e Hotspot2D.cs (polygon collider — outline/fill, hover label, click to VN overlay,
optional label anchor).
e HotspotHoverUl.cs (viewport mapping, layout rebuild, clamp toggle,

Show(text, pos[, cameral)).
ClickBGTimeline.cs (phase gate; fail-open in editor; hook for GameState).
Combat Ul presenters (Active portrait & Left bench bind to TurnManager +

UnitRuntime.OnStatsChanged).
e Data-first Ul (portraits & bars sourced from unit data, not prefab fields).



	Conversation Design Samples: Kozan Soykal 
	1) Conversation Flow Examples 
	Flow A — Map Hotspots & Hover Label (ClickBG scene) 
	Flow B — Combat UI: Dynamic Portraits & Left Bench 

	2) Voice & Tone Guidelines 
	3) Error & Fallback Handling — Guidelines I expect you (the assistant) to follow 
	Appendix — Reusable Artifacts 


